Designing Electricity Auctions

Natalia Fabra Universidad Carlos III and UCEI

> Nils-Henrik von der Fehr University of Oslo

> > David Harbord Market Analysis

UC Energy Institute, August 30, 2003

UK Electricity Prices: Market Rules or Market Structure?

Figure 1: The SMP, NETA, HHI, Capacity and Demand

The Issues

• Designing electricity markets:

- Auction format: determination of prices
- Bid formats: number of admissible steps
- Price-elastic demand
- Duration of bids: short-lived vs. long-lived
- Market Structure
- Modelling electricity markets
- Aim:

Construct a tractable model that captures essential features of electricity markets

Structure of the Presentation

- The basic model: uniform and discriminatory
- Equilibrium analysis
- Variations on the basic model
 - Multiple Bids
 - Price-elastic demand
 - Oligopoly
 - Uncertain demand
- Conclusions

The Basic Model

Two independent **suppliers** i = 1, 2, with

- Productive capacities $k_i > 0$.
- Constant unit costs $c_i \ge 0$, with $c_i = 0 \le c_2 = c$.

Demand $\theta \in (0, k_1 + k_2)$ is completely price inelastic.

Timing:

-Having observed demand, suppliers simultaneously submit price offers $b_i \leq P$ for their entire capacities.

-Outputs are determined based on the ranking of offer prices:

$$q_i(\theta; \mathbf{b}) = \begin{cases} \min\{\theta, k_i\} & \text{if } b_i < b_j \\ \rho_i \min\{\theta, k_i\} + [1 - \rho_i] \max\{0, \theta - k_j\} & \text{if } b_i = b_j \\ \max\{0, \theta - k_j\} & \text{if } b_i > b_j \end{cases}$$

where $\rho_1 = 1, \rho_2 = 0.$

Payments

• Uniform auction:

All suppliers are paid the highest accepted bid (system marginal price):

$$\pi_{i}^{u}(\theta; \mathbf{b}) = \begin{cases} \begin{bmatrix} b_{j} - c_{i} \end{bmatrix} q_{i}(\theta; \mathbf{b}) & \text{if } b_{i} \leq b_{j} \text{ and } \theta > k_{i} \\ \begin{bmatrix} b_{i} - c_{i} \end{bmatrix} q_{i}(\theta; \mathbf{b}) & \text{otherwise} \end{cases}$$

• Discriminatory auction:

Suppliers are paid their own bid:

$$\pi_i^d(\theta; \mathbf{b}) = [b_i - c_i] q_i(\theta; \mathbf{b})$$

Equilibrium Analysis

Lemma 1 In any pure-strategy equilibrium, the highest accepted price offer equals either c or P.

Proposition 1 There exists $\hat{\theta} = \hat{\theta}(c, k_1, k_2, P)$ such that:

(i) (Low demand) if $\theta \leq \hat{\theta}$, in the unique pure-strategy equilibrium the highest accepted price offer equals c.

(ii) (High demand) if $\theta > \hat{\theta}$, all suppliers are paid prices that exceed c. A pure-strategy equilibrium exists in the uniform auction, with the highest accepted offer price equal to P, but not in the discriminatory auction.

Figure 2:

The incentive of the residual supplier: Low and High demand

Sketch of the Proof

• Necessary and sufficient condition for an equilibrium with highest offer at c :

$$[c-c_i]\min\left\{\theta-k_j,k_i\right\} - [P-c_i]\max\left\{\theta-k_j,0\right\} \ge 0$$

This expression is non-increasing in θ . There exists a unique $\hat{\theta}_i$ such that the condition is satisfied iff $\theta \leq \hat{\theta}_i$.

Existence of the equilibrium then requires $\theta \leq \min \hat{\theta}_i = \hat{\theta}$.

 Necessary and sufficient condition for an equilibrium with highest offer at P :

$$[P-c_i]\max\left\{\theta-k_j,0\right\}-[c-c_i]\min\left\{\theta-k_j,k_i\right\}\geq 0$$

Existence of the equilibrium then requires $\theta \ge \min \hat{\theta}_i = \hat{\theta}$.

Comparison across Auctions: A Tale of Two States

• Low demand $[\theta \leq \hat{\theta}]$

Bidding: competitive bidding with highest accepted offer *c*. **Revenues:** $R^u = R^d$. **Cost efficiency:** $C^u = C^d$.

• High demand $[\theta > \hat{\theta}]$

Bidding:

Uniform: $b_1 < b_2 = P$ and/or $b_2 < b_1 = P$;

Discriminatory: mixed strategy equilibrium, with $b_i \in (c, P]$. Revenues: $R^u > R^d$

Cost efficiency: $C^u < C^d$ if in the uniform auction the equilibrium with $b_2 < b_1$ is played, $C^u > C^d$, otherwise.

Comparison across Auctions: A Tale of Two States (cont.)

- The relative incidence of low and high demand states determines the extent to which...
 - the industry is more or less competitive;
 - market outcomes differ across auctions
- Low demand state more likely under...
 - Capacity symmetry
 - Larger installed capacity
 - Cost asymmetry
 - Stricter regulation (low P)

Example: Increasing Installed Capacity

• Assumptions: symmetric suppliers, uniform distribution

K	1	1.2	1.4	1.6	1.8	2
ER^d	0.250	0.160	0.090	0.040	0.010	0
ER^{u}	0.375	0.320	0.255	0.180	0.095	0
$\frac{ER^d}{ER^u}$	0.667	0.500	0.353	0.222	0.105	na

Example: Increasing Capacity Asymmetries

• Assumptions: fixed K = 1, uniform distribution

$egin{array}{c} k_1 \ k_2 \end{array}$	0.5 0.5		0.7 0.3		0.9 0.1	
ER^d	0.250	0.300	0.350	0.400	0.450	0.5
ER^{u}	0.375	0.420	0.455	0.480	0.495	0.5
$\frac{ER^d}{ER^u}$	0.667	0.714	0.769	0.833	0.909	1

Variations: Multiple Unit Suppliers

Suppliers submit (upward sloping) step offer-price functions: $(b_{in}, k_{in}), n \leq N_i < \infty.$

• Equilibrium outcomes - not equilibrium pricing - are essentially independent of the number of admissible steps.

Unique zero-profit equilibrium outcome in uniform auction, in contrast to continuous supply function models

• Discrete versus Continuous bidding:

– Discrete bidding performs better

Reducing the number of steps does not affect the outcomes,
 but makes bidding simpler

Variations: Price-Elastic Demand

- Demand function: D(p, θ), with standard assumptions
 The parameter θ defines a family of demand functions s.t. if θ₁ < θ₂, D(p, θ₁) < D(p, θ₂).
 - Residual monopoly price: $p_i^r(\theta) = \arg \max_p \left\{ p \min \left[D(p, \theta) k_j, k_i \right] \right\}$.
 - Effective residual monopoly price: $P_i^r = \min \{p_i^r, P\}$.
- Equilibrium Analysis: extension of Proposition 1
 - There exists a unique threshold $\hat{\theta}$ such that equilibrium outcomes are of the low-demand case iff $\theta \leq \hat{\theta}$, and of the highdemand case otherwise.

Price-Elastic Demand (cont.)

- The **comparison across auction formats** is similar: Plus, allocative efficiency gain in the discriminatory auction.
- Demand elasticity improves market performance:
 - -Reduces equilibrium price
 - -Makes the low-demand state more likely, i.e. larger $\hat{\theta}$.

Figure 3: The effects of increasing demand elasticity

Example: Increasing Demand Elasticity

• Assumptions: symmetric suppliers, uniform distribution

<i>b</i>	0	0.025	0.050	0.075	0.100	0.125	0.150
ER^d	0.250	0.226	0.203	0.183	0.163	0.146	0.130
ER^{u}	0.375	0.350	0.327	0.304	0.282	0.260	0.240
$rac{ER^d}{ER^u}$	0.667	0.646	0.621	0.602	0.578	0.562	0.542

Variations: Oligopoly

N suppliers with k_1, \ldots, k_N and $c_1 = 0 \le c_2 \le \ldots \le c_N = c$.

Proposition 2 There exists $\hat{\theta}^-$ and $\hat{\theta}^+$, $\hat{\theta}^- \leq \hat{\theta}^+$, such that (i) (low demand) if $\theta \leq \hat{\theta}^-$, in any equilibrium the highest accepted price offer is at or below c; (ii) (high demand) if $\theta > \hat{\theta}^+$, in any equilibrium suppliers are paid prices that exceed c; (iii) $\hat{\theta}^- = \hat{\theta}^+ = \hat{\theta}$ if $k_N \geq \max_{i \leq N} k_n$.

- Low-demand: competitive, but not necessarily efficient

- Coexistence of competitive and non-competitive equilibria

Variations: Symmetric Oligopoly

Low-demand state (i.e., highest accepted price offer no higher than c) iff $\theta \leq \frac{N-1}{N}K$, high-demand state otherwise

• De-concentrating market structure:

- Reduces incidence of high-demand state.
- In the discriminatory auction, intensifies price competition in high-demand state.

Example: Increasing the Number of Suppliers

• Assumptions: symmetric suppliers, uniform distribution

N	2	3	4	5	10	100	∞
ER^d	0.250	0.167	0.125	0.100	0.050	0.005	0
ER^{u}	0.375	0.278	0.219	0.180	0.095	0.010	0
$\frac{ER^d}{ER^u}$	0.667	0.600	0.571	0.556	0.526	0.503	0.5

Variations: Uncertain Demand

Demand θ takes values in $\left[\underline{\theta}, \overline{\theta}\right] \subseteq (0, k_1 + k_2)$ according to $G(\theta)$ Similar results as above if $\overline{\theta} < \widehat{\theta}$ (low) or $\underline{\theta} > \widehat{\theta}$ (high)

Lemma 2 Assume $\underline{\theta} < \widehat{\theta} < \overline{\theta}$. There does not exist an equilibrium in pure strategies in either auction. In the unique mixed-strategy equilibrium suppliers submit bids that strictly exceed c.

- The two auction formats are equivalent if suppliers are symmetric; the comparison is unclear otherwise.
- With symmetric suppliers, long-lived bids perform better.

Variations: Vickrey Auction

Payments: Every supplier is paid the opportunity cost of its output; i.e. the rival's rejected offer times its excess capacity plus P for any remaining output.

$$\pi_{i}^{v}(\theta; \mathbf{b}) = \begin{cases} \begin{bmatrix} b_{j} - c_{i} \end{bmatrix} q_{i}(\theta, \mathbf{b}) & \text{if } b_{i} \leq b_{j}; \ \theta \leq k_{j} \\ \begin{bmatrix} b_{j} - c_{i} \end{bmatrix} \begin{bmatrix} k_{j} - q_{j}(\theta, \mathbf{b}) \end{bmatrix} + \begin{bmatrix} P - c_{i} \end{bmatrix} \begin{bmatrix} \theta - k_{j} \end{bmatrix} & \text{if } b_{i} \leq b_{j}; \ \theta > k_{j} \\ \begin{bmatrix} P - c_{i} \end{bmatrix} q_{i}(\theta; \mathbf{b}) & \text{if } b_{i} > b_{j}. \end{cases}$$

• Equilibrium Bidding:

For any realization of demand, there exists a unique equilibrium in weakly dominant strategies in which suppliers offer prices at marginal cost. Vickrey Auction (cont.)

• Comparison with uniform and discriminatory:

The Vickrey auction always results in **cost efficiency**.

But can result in **large payments**, and thus be outperformed by the uniform or discriminatory auctions.

Conclusions

• Equilibrium outcomes:

- Competitive with low-demand, non-competitive otherwise

 Incidence of low-demand state depends on market structure, technology, demand elasticity and price caps, but not on the auction format.

• Comparison across auction formats:

- Payments: discriminatory outperforms uniform.
- Efficiency: depends on equilibrium played in uniform.
- Regulatory measures: more effective with discriminatory

Conclusions (cont.)

• Market structure versus market design:

Switching to discriminatory may reduce prices as much as:

doubling the number of players;

increasing the capacity of two symmetric duopolists by nearly 40%.

• Demand Elasticity:

Increasing demand elasticity not only reduces prices in high demand state, it also reduces incidence of high demand states
Switching to a discriminatory may lead to a similar reduction in prices as increasing demand elasticity from 0 to 0.15.