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Motivated by the new auction format in the England and Wales electricity market, as well as the
recent debate in California, we characterize bidding behavior and market outcomes in uniform
and discriminatory electricity auctions. Uniform auctions result in higher average prices than
discriminatory auctions, but the ranking in terms of productive efficiency is ambiguous. The
comparative effects of other market design features, such as the number of steps in suppliers’ bid
functions, the duration of bids, and the elasticity of demand are analyzed. We also consider the
relationship between market structure and market performance in the two auction formats.

1. Introduction

� Electricity wholesale markets differ in numerous dimensions, but until recently all have
been organized as uniform, first-price auctions. Recent experience—and the perceived poor
performance—of some decentralized electricity markets, however, has led certain regulatory
authorities to consider adopting new auction designs. In England and Wales a major overhaul
of the electricity trading arrangements introduced in 1990 has recently taken place, and among
the reforms implemented in March 2001, a discriminatory or “pay-as-bid” auction format was
adopted. The British regulatory authority (Ofgem) believed that uniform auctions are more sub-
ject to strategic manipulation by large traders than are discriminatory auctions, and expected the
new market design to yield substantial reductions in wholesale electricity prices. Similarly, before
its collapse, the California Power Exchange commissioned a report by leading auction theorists
on the advisability of a switch to a discriminatory auction format for the exchange’s day-ahead
market, due to the increasing incidence of price spikes in both on- and off-peak periods (see Kahn
et al., 2001).

It is well known that discriminatory auctions are not generally superior to uniform auctions.
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Both types of auction are commonly used in financial and other markets, and there is now a
voluminous economic literature devoted to their study.1 In multi-unit settings, the comparison
between these two auction forms is particularly complex. Neither theory nor empirical evidence
tells us that discriminatory auctions perform better than uniform auctions in markets such as those
for electricity, although this has become controversial.

Wolfram (1999), for instance, argues in favor of uniform auctions for electricity, and Rassenti,
Smith, and Wilson (2003) cite experimental evidence suggesting that discriminatory auctions may
reduce volatility (i.e., price spikes), but at the expense of higher average prices. Other authors have
come to opposite conclusions. Federico and Rahman (2003) find theoretical evidence in favor of
discriminatory auctions, at least for the polar cases of perfect competition and monopoly, while
Klemperer (2001, 2002) suggests that discriminatory auctions might be less subject to “implicit
collusion.”2 Kahn et al. (2001), on the other hand, reject outright the idea that switching to a
discriminatory auction will result in greater competition or lower prices.

In Britain, Ofgem has credited the recent fall in wholesale electricity prices in England and
Wales to the new market design; however, this too is controversial.3 Evans and Green (2002)
present some supporting evidence,4 but Bower (2002) and Newbery (2003) argue that the decline
in prices is fully explained by the reduction in market concentration brought about by asset
divestitures, an increase in imports, and market excess capacity. Fabra and Toro (2003) suggest
that all of these factors, including the change in market design, are significant in explaining the
reduction in wholesale electricity prices.5

The purpose of this article is to address this electricity market design issue in a tractable
model designed to capture some of the key features of decentralized electricity markets.6 We
characterize equilibrium market outcomes in a discrete, multi-unit auction model for uniform and
discriminatory electricity auctions under a variety of assumptions concerning costs and capacity
configurations, bid formats, demand elasticities, and the number of suppliers in the market. Our
purpose is to gain an improved understanding of how these different auction formats affect
suppliers’ bidding incentives, the degree of competition, and overall welfare in decentralized
electricity markets.

Our analysis proceeds by first considering a “basic duopoly model” similar to the discrete,
multi-unit auction described in von der Fehr and Harbord (1993), which is then varied in several
directions. In the basic duopoly model, two “single-unit” suppliers with asymmetric capacities
and (marginal) costs face a market demand curve that is assumed to be both perfectly inelastic
and known with certainty when suppliers submit their offer prices. By “single unit” we mean
that each supplier must submit a single price offer for its entire capacity (i.e., its bid function is
horizontal). This assumption simplifies the analysis considerably, but in Section 4 we show that
it is largely inessential. The assumption of price-inelastic demand can be justified by the fact that
the vast majority of consumers purchase electricity under regulated tariffs that are independent
of the prices negotiated in the wholesale market, at least in the short run.7 However, in order

1 See Ausubel and Cramton (2002) and Binmore and Swierzbinski (2000) for the theory and empirical evidence.
Archibald and Malvey (1998) and Belzer and Reinhart (1996) discuss the U.S. Treasury’s experiments with these auction
formats in more detail. See also Kremer and Nyborg (2004).

2 In a model similar to that used in this article, Fabra (2003) shows that tacit collusion may be easier to sustain in
uniform auctions than in discriminatory auctions.

3 Ofgem reported a 19% fall in wholesale baseload prices from the implementation of the reforms in March 2001
to February 2002, and a 40% reduction since 1998 when the reform process began. Wholesale prices have since risen
again so that they are now near their prereform levels.

4 Evans and Green argue that the new trading arrangements may have undermined opportunities for tacit collusion.
Sweeting (2004) claims to have found evidence of collusion in the England and Wales market during the late 1990s,
although this finding has been challenged by Newbery (2003).

5 Another contributing explanation for the initial fall in prices may be that Ofgem staked its reputation on the
market reforms delivering lower-cost electricity, and for more than a year after their introduction sought to expand its
regulatory powers to police “market abuses” by smaller generators. See Bishop and McSorely (2001) for a discussion.

6 For a discussion of some methodological issues in modelling electricity markets, which has informed our choice
of models, see von der Fehr and Harbord (1998) and Fabra, von der Fehr, and Harbord (2002).

7 See Wolak and Patrick (1997) and Wilson (2002) on this. In most electricity markets, large industrial consumers
© RAND 2006.
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to evaluate some of the possible effects of real-time pricing or demand-side bidding, we then
extend the basic model and consider downward-sloping demand functions. We also consider the
oligopoly case in order to shed some light on the relationship between market concentration and
market performance.

Finally, the assumption that suppliers have perfect information concerning market demand
is descriptively reasonable when applied to markets in which offers are “short lived,” such as in
Spain where there are 24 hourly markets each day (see Garcı́a-Dı́az and Marı́n, 2003). In such
markets suppliers can be assumed to know the demand they face in any period with a high degree
of certainty. In markets in which offer prices remain fixed for longer periods, e.g., a whole day,
such as in Australia and in the original market design in England and Wales, on the other hand,
it is more accurate to assume that suppliers face some degree of demand uncertainty or volatility
at the time they submit their offers. Hence we allow for this type of uncertainty in Section 4.

Under each set of assumptions we characterize suppliers’ equilibrium bidding behavior in
uniform and discriminatory auctions, and compare the equilibrium outcomes in terms of prices and
productive efficiency. Our main insights may be summarized as follows. Equilibrium outcomes
in either auction format fall essentially into one of two categories, depending upon the level
of demand. In low-demand realizations, prices are competitive in the sense that they cannot
exceed the cost of the most efficient nondispatched supplier; in high-demand realizations, on the
other hand, prices exceed the cost of even the most inefficient supplier. In high-demand states8

there are multiple, price-equivalent pure-strategy equilibria in the uniform auction, while in the
discriminatory auction the equilibrium is in mixed strategies. With certain demand (i.e., short-
lived bids), payments to suppliers (or average prices) are lower in the discriminatory auction,
and numerical examples suggest that the difference can be substantial.9 The comparison in terms
of productive efficiency is ambiguous, however, and depends on parameter values as well as
on which pure-strategy equilibrium is played in the uniform auction. The relative incidence of
low-demand and high-demand states depends upon structural features of the market, such as
the degree of market concentration, and on the market design, in particular the market reserve
price and opportunities for demand-side bidding. Structural factors that reduce the incidence of
high-demand states affect bidding strategies in the discriminatory, but not in the uniform, auction.
Market design changes, on the other hand, affect bidding strategies in both types of auction.

2. The model

� In the basic duopoly model two independent suppliers compete to supply the market with
productive capacities given by ki > 0, i = 1, 2. Capacity is assumed to be perfectly divisible.
Supplier i’s marginal cost of production is ci ≥ 0 for production levels less than capacity, while
production above capacity is impossible (i.e., infinitely costly). The suppliers are indexed such
that c1 ≤ c2. Without further loss of generality we may normalize suppliers’ marginal costs so that
0 = c1 ≤ c2 = c. The level of demand in any period, θ , is a random variable that is independent of
the market price, i.e., perfectly price inelastic. In particular, θ ∈ [θ, θ ] ⊆ (0, k1 +k2) is distributed
according to some known distribution function G(θ ).

The two suppliers compete on the basis of bids, or offer prices, submitted to the auctioneer.
The timing of the game is as follows. Having observed the realization of demand, each supplier
simultaneously and independently submits a bid specifying the minimum price at which it is
willing to supply the whole of its capacity, bi ≤ P , i = 1, 2, where P denotes the “market reserve
price,” possibly determined by regulation.10 We let b ≡ (b1, b2) denote a bid profile. On the basis

can purchase electricity directly from suppliers or the wholesale market, but their demand comprises only a small fraction
of the total volume traded.

8 The terms “state” and “realization” are used interchangeably throughout this article.
9 With uncertain demand (or long-lived bids), payments to suppliers are equal in both auction formats, at least for

the case of symmetric firms.
10 P can be interpreted as the price at which all consumers are indifferent between consuming and not consuming,

or a price cap imposed by the regulatory authorities. See von der Fehr and Harbord (1993, 1998).
© RAND 2006.
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of this profile the auctioneer calls suppliers into operation. If suppliers submit different bids, the
lower-bidding supplier’s capacity is dispatched first. If this capacity is not sufficient to satisfy
the total demand θ , the higher-bidding supplier’s capacity is then dispatched to serve the residual
demand, i.e., total demand minus the capacity of the lower-bidding supplier. If the two suppliers
submit equal bids, then supplier i is ranked first with probability ρi , where ρ1 + ρ2 = 1, ρi = 1 if
ci < c j , and ρi = 1

2 if ci = c j , i = 1, 2, i �= j .11

For a given bid profile b, the quantities allocated to each supplier are thus independent of
the auction format. The output allocated to supplier i , i = 1, 2, denoted by qi (θ ; b), is given by

qi (θ ; b) =


min{θ, ki} if bi < b j
ρi min{θ, ki} + [1 − ρi ] max{0, θ − k j} if bi = b j
max{0, θ − k j} if bi > b j ,

(1)

and is solely a function of demand and the bid profile (and costs when equal price bids are
submitted).

The payments made by the auctioneer to the suppliers do depend upon the auction format,
however. In the uniform auction, the price received by a supplier for any positive quantity dis-
patched by the auctioneer is equal to the highest accepted bid in the auction. Hence, for a given
value of θ and a bid profile b = (bi , b j ), supplier i’s profits, i = 1, 2, i �= j , can be expressed as

πu
i (θ ; b) =

{
[b j − ci ]qi (θ ; b) if bi ≤ b j and θ > ki
[bi − ci ]qi (θ ; b) otherwise, (2)

where qi (θ ; b) is determined by (1).
In the discriminatory auction, the price received by supplier i for its output is equal to its

own offer price whenever a bid is wholly or partly accepted. Hence, for a given value of θ and a
bid profile b, supplier i’s profits, i = 1, 2, can be expressed as

πd
i (θ ; b) = [bi − ci ]qi (θ ; b), (3)

where again qi (θ ; b) is determined by (1).12

Both suppliers are assumed to be risk neutral and to maximize their expected profits in the
auction.

3. Equilibrium analysis: a tale of two states
� We first characterize the Nash equilibria in weakly undominated strategies of the model
described in the previous section and then compare equilibrium outcomes.13

Lemma 1. In any pure-strategy equilibrium, the highest accepted price offer is in the set {c, P}.
Moreover, in the discriminatory auction, in a pure-strategy equilibrium all accepted units are
offered at the same price.

Based on this ancillary result, we can prove the main result of this section, namely that
equilibrium outcomes essentially fall into one of two categories, depending upon the level of
demand:

Proposition 1. There exists θ̂ = θ̂ (c, k1, k2, P) such that

(i) (low demand) if θ ≤ θ̂ , in the unique pure-strategy equilibrium the highest accepted
price offer is c;14

11 This rationing rule is used solely to ensure the existence of a pure-strategy equilibrium in the standard Bertrand
game with asymmetric costs.

12 Note that the discriminatory auction is essentially a Bertrand-Edgeworth game. See Deneckere and Kovenock
(1996).

13 All derivations of results are relegated to the Appendix.
14 This result describes the standard Bertrand-like equilibrium with asymmetric firms. In low-demand states the

two types of auction are strategically equivalent, since only one supplier ever produces and supplies the entire market. It
© RAND 2006.
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(ii) (high demand) if θ > θ̂ , all suppliers are paid prices that exceed c. A pure-strategy
equilibrium exists in the uniform auction, with the highest accepted offer price equal
to P , but not in the discriminatory auction.

As is easily seen, in low-demand realizations the equilibrium outcome is both unique and
identical across the two auction formats. In the pure-strategy equilibrium, both suppliers submit
offer prices equal to c (i.e., the cost of the inefficient supplier) but only the most efficient supplier
produces. Hence the equilibrium outcomes in both auctions are competitive in the sense that prices
are constrained by the cost of the least efficient supplier. They are also cost efficient, i.e., overall
generation costs are minimized.

In high-demand realizations the equilibrium outcomes are very different. In the uniform
auction, any pure-strategy equilibrium involves one supplier bidding at the market reserve price
P , while the other supplier submits an offer price sufficiently low so as to make undercutting
unprofitable (see von der Fehr and Harbord, 1993). The precise nature of the equilibrium depends
upon parameter values. There are three possible cases: (a) if θ̂2 ≤ θ ≤ θ̂1, or k1 ≤ θ ≤ k2+(c/P)k1,
only equilibria in which b1 < b2 = P exist; (b) if θ̂1 < θ ≤ θ̂2, or [P/(P − c)]k2 < θ ≤ k1, only
equilibria in which b2 < b1 = P exist; and (c) if θ > max{̂θ1, θ̂2}, or θ > max{k1, k2 + (c/P)k1},
both types of pure-strategy equilibria exist. Note that in case (a) the equilibrium outcome is always
cost efficient, while in case (b) it is always inefficient. In case (c) cost efficiency depends on which
equilibrium is played.15

In the discriminatory auction only mixed-strategy equilibria exist in high-demand states.
In particular, there exists a unique equilibrium in which the two suppliers mix over a common
support that lies above the cost of the inefficient supplier and includes the market reserve price,
i.e., bi ∈ (c, P], i = 1, 2. This mixed-strategy equilibrium is not efficient in general, as there is a
positive probability that the inefficient supplier will submit the lowest offer price.

The relative likelihood of low-demand versus high-demand states depends upon structural
characteristics of the industry and on the strictness of the regulatory regime. Straightforward
calculations show that

θ̂ =


k1 if k1 ≤ P

P − c
k2

P
P − c

k2 if k1 >
P

P − c
k2.

(4)

From this expression it follows that, for a given ratio of supplier capacities, the incidence
of low-demand states is increasing in aggregate capacity. The incidence of low-demand states is
also greater when suppliers are more symmetrically sized; more precisely, given c, P , and K ,
with k1 + k2 = K , θ̂ is maximized at k1 = [P/(P − c)]k2, which involves perfect symmetry if
c = 0. Further, cost asymmetry tends to make low-demand states more likely, since the loss in
profit from undercutting the inefficient rival relative to serving residual demand is smaller the
higher is his cost. Finally, since pricing monopolistically and serving residual demand is more
profitable the higher is the market reserve price, the incidence of high-demand states is greater
the higher is P . If we think of the market reserve price as a regulatory price cap, it follows that
stricter regulation can improve market performance, not only because market power is reduced in
high-demand states, but also because the likelihood of high-demand states occurring is lowered.

In comparing market performance across the two auction formats we consider both total
generation costs and the average price paid to suppliers. For auction format f = d, u, let C f and

is well known that the Bertrand equilibrium relies on at least one firm using a weakly dominated strategy, i.e., bidding
at cost (Mas-Colell, Whinston, and Green, 1995), a consequence of the strategy space being continuous. We ignore this
issue here, but show in the Appendix that with asymmetric firms there also always exist outcome-equivalent equilibria in
which the higher-cost firm plays a mixed strategy and never plays its own cost with positive probability.

15 There is also a continuum of mixed-strategy equilibria in the uniform auction in high-demand realizations.
However, since each of these equilibria (i) involves the higher-cost firm playing a weakly-dominated strategy with
positive probability and (ii) is payoff dominated by either of the pure-strategy equilibria, we do not consider them further
here. See the Appendix for the details.
© RAND 2006.
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R f denote equilibrium levels of total generation costs and payments to suppliers, respectively,
and let b f

i and q f
i denote supplier i’s equilibrium offer price and output, respectively. We have

C f =
∑

i ci q f
i , f = u, d , Rd =

∑
i bd

i qd
i in the discriminatory auction, and Ru = pu ∑

i qu
i = puθ ,

where pu = maxi{bu
i | qu

i > 0} is the market price, in the uniform auction. From Proposition 1
the following result is immediate.

Proposition 2. Market performance:

(i) Rd = Ru if θ ≤ θ̂ and Rd < Ru if θ > θ̂ .

(ii) Cd = Cu if θ ≤ θ̂ , Cd > Cu if θ̂2 < θ ≤ θ̂1, Cd < Cu if θ̂1 < θ ≤ θ̂2, and Cd ≷ Cu

otherwise, depending upon whether, in the uniform auction, an equilibrium is played
in which supplier 1 or supplier 2 submits the higher offer price.

In other words, the discriminatory auction weakly outperforms the uniform auction in terms
of payments (or the average price paid) to suppliers. In low-demand realizations the equilibrium
outcomes are identical in both auctions. In high-demand realizations the market price is at its
maximum (P) in the uniform auction, while prices in the discriminatory auction are below P
with positive probability. Comparison of the auctions in terms of productive efficiency is more
complex, however. In low-demand realizations costs are minimized in both auction formats. In
high-demand realizations the comparison is unambiguous in cases (a) and (b) only. In the uniform
auction production costs are minimized in case (a) and maximized in case (b), while in the mixed-
strategy equilibrium of the discriminatory auction the more efficient supplier is undercut by the
inefficient supplier with positive probability. Hence the cost performance in the uniform auction
is superior to that of the discriminatory auction in case (a), but worse in case (b). In case (c) the
comparison depends upon which pure-strategy equilibrium is played in the uniform auction.

We conclude this section by considering how the performance of the two auction formats
depends upon the parameters of the model. A change in parameter values affects outcomes in
two distinct ways, first by altering the relative incidence of high- versus low-demand states, and
second by affecting the intensity of price competition in high-demand states. The importance
of these two effects differs between the two auction formats. In the uniform auction, in high-
demand realizations price always equals the market reserve price, whereas in the discriminatory
auction bidding strategies depend on the cost and capacity configuration, as well as on the level
of demand and the market reserve price. An increase in the threshold θ̂ has a profound effect on
prices in the uniform auction, as prices jump down from the market reserve price to marginal cost

FIGURE 1

EXPECTED EQUILIBRIUM PRICES FOR DIFFERENT DEMAND REALIZATIONS, θ

© RAND 2006.
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TABLE 1 Increasing Installed Capacity

K 1 1.2 1.4 1.6 1.8 2

E Rd .250 .160 .090 .040 .010 0
E Ru .375 .320 .255 .180 .095 0
E Rd/E Ru .667 .500 .353 .222 .105 NA

over the relevant range of demand realizations. In the discriminatory auction, however, the effect
of an increase in θ̂ is much less pronounced. Since the equilibrium outcomes in high-demand
realizations approach those of low-demand realizations as θ ↓ θ̂ , a marginal increase in θ̂ has no
effect on the outcome per se.

Figure 1 illustrates the different ways in which outcomes are affected by changes in parameter
values. The figure is based on an example in which [θ, θ ] = [0, 1], c = 0, P = 1, and k1 = k2 = K/2.
The two solid lines show (expected) equilibrium prices for different realizations of demand for
the two auction formats when K = 1. In both formats, price equals c = 0 when θ ≤ θ̂ = .5.
When θ > θ̂ , price equals P = 1 in the uniform auction, whereas it increases gradually with
demand in the discriminatory format. The thin lines show the corresponding prices for the case
K = 1.2, in which the critical threshold is now θ̂ = .6. Whereas the increase in the relative
incidence of low-demand realizations is the same in both auction formats, the effects on prices
differ: in the uniform auction, prices jump from P = 1 to c = 0 for some demand realizations; in
the discriminatory auction, the effect on prices is smoother but applies to a wider range of demand
realizations.

Because of the fundamental differences in the way the equilibrium outcomes are affected,
it is not possible in general to specify how a change in a particular parameter affects the relative
performance of the two auction formats. In particular, changes in relative performance depend
critically upon the distribution of demand G. In order to illustrate the possible effects, as well
as the potential order of magnitudes involved, we proceed by considering a series of numerical
examples. We maintain the parametrization introduced above, with the added assumption that
G(θ ) = θ , and define k1 + k2 = K ≥ 1, with k1 ≥ k2. Then expected payments to suppliers taken
over all possible demand realizations (which are equal to expected profits in this case) become
E Rd = (K/2)([1 − k2]2/k1) and E Ru = (1/2)[1 − k2][1 + k2], respectively.

Table 1 presents numerical results for different values of total installed capacity K for the
case in which individual capacities are symmetric, i.e., k1 = k2 = (K/2). At K = 1, total expected
payments are 33% lower in the discriminatory auction. In the uniform auction, a similar reduction
in average prices would require an excess capacity of 40% (i.e., K = 1.4).16 In both auctions,
increasing the size of the players reduces both average prices and revenues. The procompetitive
effect on bidding strategies in the discriminatory auction is strong enough in this example so that
its relative performance improves the higher is the capacity margin.

In Table 2 we present results for different distributions of a given total capacity K = 1. A
more asymmetric distribution of capacities implies poorer performance in both types of auction,

TABLE 2 Increasing Capacity Asymmetry

k1 .5 .6 .7 .8 .9 1
k2 .5 .4 .3 .2 .1 0

E Rd .250 .300 .350 .400 .450 .5
E Ru .375 .420 .455 .480 .495 .5
E Rd/E Ru .667 .714 .769 .833 .909 1

16 Since in both auctions the level of demand served in equilibrium is fixed at θ , expected revenues can be taken
as a proxy for the expected (average) price paid by consumers.
© RAND 2006.



mss # Fabra et al.; art. # 2; RAND Journal of Economics vol. 37(1)

30 / THE RAND JOURNAL OF ECONOMICS

TABLE 3 Reducing the Market Reserve Price

P 1 .9 0.75 .5 .25 0

E Rd .250 .225 .188 .125 .063 0
E Ru .375 .334 .281 .188 .094 0
E Rd/E Ru .667 .667 .667 .667 .667 NA

although the effect is stronger in the discriminatory auction. Reducing the size of the smaller
supplier increases the incidence of high-demand states. In the discriminatory auction, the larger
supplier faces a larger residual demand and hence has more to gain from submitting higher
offer prices. Given this, the smaller supplier responds by increasing its offer prices also. Overall
the result is that reallocating capacity from the larger to the smaller supplier (e.g., via capacity
divestitures) improves the relative performance of the discriminatory auction over the uniform
auction.

Finally, we consider how changes to the market reserve price P affect performance in the
two auctions. Using the same example, we fix total capacity so K = 1 and consider symmetric
firms, i.e., k1 = k2 = .5.17 Table 3 presents the numerical results. Reducing the market reserve
price reduces equilibrium price (and hence revenues) in both types of auction without affecting the
comparison of their relative performance. This is because equilibrium revenues are proportional
to the reserve price P in both auctions when c = 0.

4. Extensions and variations
� In the preceding sections we have analyzed electricity auctions for an asymmetric duopoly
assuming that each supplier could submit only a single offer price for its entire capacity, and
that demand was both known with certainty at the time offer prices were submitted and perfectly
inelastic. In the following subsections we relax each of these assumptions in turn.

� Multiple bids. We first extend the analysis by allowing suppliers to submit upward-sloping
step offer-price functions instead of constraining them to submit a single bid for their entire
capacity. An offer-price function for supplier i , i = 1, 2, is then a set of price-quantity pairs
(bin, kin), n = 1, . . . , Ni , Ni < ∞. For each pair, the offer price bin specifies the minimum price
for the corresponding capacity increment kin , where bin ∈ [0, P] and

∑Ni
n=1 kin = ki , i = 1, 2.

The following lemma states that the equilibrium outcomes—but not the equilibrium pricing
strategies—are essentially independent of the number of admissible steps in each supplier’s bid
function (and whether the “step sizes” are choice variables for suppliers). This implies that our
comparisons between auction types remain valid in this setting.

Lemma 2 (multiple-unit suppliers). (i) Uniform auction: the set of (pure-strategy) equilibrium
outcomes is independent of the number of steps in each supplier’s bid function (in particular,
whether Ni = 1 or Ni > 1). (ii) Discriminatory auction: for low-demand realizations, there is a
unique equilibrium outcome independent of the number of units per supplier. For high-demand
realizations, there exists a set of mixed strategies that constitute an equilibrium independent of
the number of units per supplier; when N1 = N2 = 1, these strategies constitute the unique
equilibrium.18

The existence of a unique, competitive-equilibrium outcome in the uniform auction is in stark
contrast to analyses that assume continuously differentiable bid functions, i.e., Ni = ∞. As first
shown by Wilson (1979) and further developed by Back and Zender (1993) and Wang and Zender

17 This implies that the incidence of high- versus low-demand states is unaffected by changes in the market reserve
price P in this example.

18 The equilibrium offer-price functions, however, do depend upon the number of units or admissible bids. For
instance, there can be payoff-irrelevant units that are offered at higher prices so long as sufficiently many units are priced
at marginal cost.
© RAND 2006.
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(2002), in the uniform auction with continuous supply functions there exists a continuum of pure-
strategy equilibria, some of which result in very low revenues for the auctioneer (or high payments
to suppliers in procurement auctions). The latter are characterized by participants offering very
steep supply functions that inhibit competition at the margin: faced with a rival’s steep supply
function, a supplier’s incentive to price more aggressively is offset by the large decrease in price
(the “price effect”) that is required to capture an increment in output (the “quantity effect”). Since
the price effect always outweighs the quantity effect for units of infinitesimal size, extremely
collusive-like equilibria can be supported in the continuous uniform auction, even in a one-shot
game.19

Discreteness of the bid functions rules out such equilibria, however. When suppliers are
limited to a finite number of price-quantity bids, a positive increment in output can always be
obtained by just slightly undercutting the price of a rival’s unit. Since the “price effect” no longer
outweighs the “quantity effect,” the collusive-like equilibria found in the continuous auction cannot
be implemented. This observation casts some doubt on the relevance of applying the continuous-
share auction model to electricity markets in which participants are limited to a small number of
offer prices per generating unit. The collusive-like equilibria obtained under the assumption that
bid functions are continuous do not generalize to models in which offer increments are of positive
size, no matter how small these are (see also Kremer and Nyborg, 2004). We conclude that the
equilibrium outcomes for the two types of auction are independent of the number of admissible
steps in the offer-price functions, so long as this number is finite. Hence the characterization of
the equilibrium outcomes provided in Proposition 1 would remain unchanged if we had instead
assumed that suppliers submit offer-price functions rather than a single offer price for their whole
capacity.

It is tempting to draw the conclusion that limiting the number of allowable bids in a uniform-
price electricity auction would therefore improve market performance. Strictly speaking, our
analysis does not support such a conclusion. What we have shown is that (i) moving from a
continuous- to a discrete-bid auction potentially improves market performance by eliminating
the collusive-like equilibria in the uniform auction, but (ii) market performance in a discrete-bid
auction is independent of the number of allowable bids, so long as this number is finite. It could
be argued, however, that since limiting the number of bids does not effectively restrict agents’
opportunities, it might be desirable in the interests of market simplicity and transparency. Indeed,
in equilibrium players may optimally choose not to differentiate their bids even when they are
able to do so.

� Price-elastic demand. Our next variation on the basic duopoly model considers the case
of price-elastic demand. For this purpose we let the market demand function be represented by
D(p, θ ), which is assumed to satisfy the following standard assumptions: as a function of p, D
is continuous and bounded; there exists a price p(θ ) > 0 such that D(p, θ ) = 0 if and only if
p ≥ p(θ ); D is decreasing in p, ∀p ∈ [0, p(θ )]; and pD is concave in p, ∀p ∈ [0, p(θ )].

Given a downward-sloping demand function, in either auction format the output allocated
to supplier i , qi (b, θ ), as a function of the offer price profile b = (bi , b j ), becomes

qi (b, θ ) =


min{D(bi , θ ), ki} if bi < b j
ρi min{D(bi , θ ), ki} + ρ j min{max{0, D(bi , θ ) − k j}, ki} if bi = b j
min{max{0, D(bi , θ ) − k j}, ki} if bi > b j ,

for i = 1, 2. Note that independently of the payments made to suppliers in either auction format,
it is implicitly assumed that consumers are charged the market-clearing price, i.e., the highest
accepted offer price. Obviously, this leads to the market (auctioneer) running surpluses in the
discriminatory auction. Assuming that such surpluses are dealt with via lump-sum transfers, total

19 This type of equilibrium cannot be supported in a discriminatory auction. Klemperer (2002) provides a particu-
larly clear discussion.
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surplus (i.e., the sum of supplier profits and consumer surplus) will be determined solely by the
market-clearing price and the allocation of output between suppliers.

From the above assumptions it follows that market demand is a continuous and decreasing
function of price and that, whenever D(ci ) > k j , j �= i , there exists a unique price pr

i that maxi-
mizes a supplier’s profits from serving the residual demand, i.e., pr

i (θ ) = arg maxp{p min[D(p, θ )
− k j , ki ]}. The price pr

i will be referred to as the “residual monopoly price” of supplier i .
We further assume that the parameter θ defines a family of demand functions such that if

θ1 < θ2, D(p, θ1) < D(p, θ2). Intuitively, θ is a shift parameter that affects the position, but not
the slope, of the demand function (at least not to the extent that demand functions corresponding
to different θ ’s cross). It follows that pr

i (θ ) is increasing in θ .
Let Pr

i = min{pr
i , P} be the effective residual monopoly price of supplier i . Then it should

be clear that the argument of Lemma 1 goes through as before, with Pr
1 and Pr

2 substituted for P .
Furthermore, we can extend the result of Proposition 1 that there exists a unique threshold θ̂ such
that equilibrium outcomes are of the low-demand and high-demand type, respectively, depending
upon whether the shift parameter θ is below or above the threshold. The performance comparison
across auction formats is also essentially the same, with the following caveat: since the consumer
price is generally lower in the discriminatory auction, there is an allocative efficiency gain due to
the corresponding increase in consumption.

Our main purpose of this section, however, is to relate the critical threshold θ̂ to the price
elasticity of demand. To this end we use the following definition: for two demand functions D1

and D2 with D1(p, θ ) = D2(p, θ ) at p = c, the demand function D1 is said to be more elastic than
the demand function D2 if D1(p, θ ) < D2(p, θ ) for all p ≥ c. If we let prt

i denote the residual
monopoly price of supplier i corresponding to the demand function Dt , it follows that pr1

i < pr2
i

if D1 is more elastic than D2. The following result is then immediate.

Proposition 3. The critical threshold θ̂ is nondecreasing in the elasticity of the demand func-
tion D.

In other words, the price elasticity of demand affects market performance in two distinct
ways. First, given a high-demand realization, the distortion due to the exercise of market power
is smaller when demand is more price elastic (i.e., the residual monopoly price is lower). Second,
the incidence of high-demand realizations is reduced the more elastic is the demand curve. With
a downward-sloping demand function, the gain from exercising market power relative to residual
demand is less and hence there is more incentive to compete for market share by undercutting the
rival, leading to a higher incidence of competitive outcomes.

We conclude this section by considering a numerical example. We maintain the assumptions
introduced in the example considered in Section 3 above—with k1 = k2 = k—and in addition
assume that D(p, θ ) = θ − βp. It follows that θ̂ = k and that (for β sufficiently small) Pr

1 = Pr
2 =

(θ − k)/(2β) for θ < k + 2β and Pr
1 = Pr

2 = P = 1 otherwise. Expected payments to suppliers
become E Rd =

∫ k+2β

k (1/2β)[θ − k]2dθ + 2
∫ 1

k+2β
[θ − β − k]dθ and E Ru =

∫ k+2β

k (1/4β)[θ −
k][θ + k]dθ +

∫ 1
k+2β

[θ − β]dθ , respectively. In Table 4 we present results for different values of
the slope of the demand function.20

As expected, a more elastic demand reduces payments to suppliers. In this example, the
relative incidence of low-demand and high-demand states (̂θ ) is not affected, although more elastic
demand does reduce the effective residual monopoly price. In the discriminatory auction we have
the additional effect that bidding becomes more aggressive in high-demand states. Consequently,
the relative performance of the discriminatory auction increases with the elasticity of demand
here.21,22

20 Note that, for β sufficiently small, β approximates the price elasticity of demand at the peak (i.e., θ = 1) evaluated
at the maximum admissible price P = 1.

21 As pointed out above, the revenue comparison tends to understate the performance of the discriminatory auction
relative to that of the uniform auction as far as consumer prices (and, indeed, consumer surplus) is concerned.

22 The difference in total payments between the two auction formats in the case of perfectly inelastic demand
(β = 0) corresponds to the difference between the cases β = 0 and β = .15 in the uniform auction.
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TABLE 4 Increasing the Elasticity of Demand

β 0 .025 .05 .075 .100 .125 .15

E Rd .250 .226 .203 .183 .163 .146 .130
E Ru .375 .350 .327 .304 .282 .260 .240
E Rd/E Ru .667 .646 .621 .602 .578 .562 .542

� Oligopoly. Our next variation on the basic duopoly model considers the case of oligopoly.
This allows us to generalize some of the insights from the duopoly model as well as analyze the
impact of changes in the number of suppliers on profits and pricing behavior.

Accordingly we now consider S suppliers, where ks is the capacity and cs is the marginal
cost of supplier s, s = 1, 2, . . . , S. Suppliers are ordered by efficiency, so that 0 = c1 ≤ c2 ≤
· · · ≤ cS = c. As before, the types of equilibria that arise in the different auction formats depend
upon the value of the market demand θ relative to suppliers’ individual and aggregate capacities.
In particular, we have the following result.

Proposition 4. There exists θ̂−
s and θ̂+

s , θ̂−
s ≤ θ̂+

s , such that, for s = 1, 2, . . . , S,

(i) if θ ≤ θ̂−
s , in any equilibrium the highest accepted price offer is at or below cs ;

(ii) if θ > θ̂+
s , in any equilibrium suppliers are paid prices that are at least equal to cs and

strictly above cs if s = S or cs < cs+1, s = 1, 2, . . . , S − 1;

(iii) θ−
s = θ̂+

s = θ̂s if ks ≥ maxi<S ki .

In other words, we have a series of demand threshold pairs, each pair corresponding to the
cost of a particular supplier. When demand is below the lower of these two thresholds, equilibrium
prices are limited by the cost of the corresponding supplier; when demand is above the upper
threshold, equilibrium prices always exceed the cost of that same supplier. A sufficient condition
for the two thresholds to be equal is that the capacity of the corresponding supplier is at least as
large as that of any more efficient supplier.

To demonstrate that the two thresholds may in fact differ, and hence that there may be a range
of demand outcomes for which competitive and noncompetitive equilibria coexist, consider the
following example. Let S = 3, c1 = 0, c2 = .5, c3 = 1, k1 = 1, k2 = 1, and k3 = .25. Furthermore,
let P = 1.75 and θ = 1.5. Then it is easily verified that the following equilibria exist in the
uniform auction: {b1 = 1, b2 = .5, b3 = 1} and {b1 = 0, b2 = 1.75, b3 = 1}. Note that the first
of these equilibria is competitive in the sense that price is limited by the cost of the inefficient
supplier, whereas the second equilibrium is not. Note further that both equilibria are inefficient in
the sense that overall generation costs are not minimized: in particular, when the market outcome
is competitive, inefficient dispatch nevertheless results.

In the discriminatory auction, no pure-strategy equilibria exist so long as θ > θ̂−
1 . To see this,

note that in any equilibrium in which more than one supplier is dispatched, profits of lower-pricing
suppliers are strictly increasing in their offer prices below the offer price of the marginal supplier.
Furthermore, for the marginal supplier, undercutting is always profitable so long as competing
offer prices are sufficiently close. These opposing forces destroy any candidate pure-strategy
equilibrium. We consequently have a similar dichotomy to that observed in the duopoly case, in
which the comparison of outcomes between the two auction formats generally depends on which
equilibrium is played in the uniform auction.

We end this section by considering the relationship between market structure and market
performance. We take as our starting point a generalization of the “two-state” result of the duopoly
section, which follows as a corollary of the above equilibrium characterization.

Corollary 1. There exists θ̂− and θ̂+, θ̂− ≤ θ̂+, such that

(i) (low demand) if θ ≤ θ̂−, in any equilibrium the highest accepted price offer is at or
below c;
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(ii) (high demand) if θ > θ̂+, in any equilibrium suppliers are paid prices that exceed c;

(iii) θ̂− = θ̂+ = θ̂ if kS ≥ max j<S ks .

In low-demand realizations, prices are limited by costs, whereas in high-demand realizations,
they are not. Low-demand equilibria are competitive in the sense that prices are limited by the
cost of less efficient, nondispatched suppliers. However, unlike in the duopoly case, low-demand
equilibria are not necessarily cost efficient. In the uniform auction there may exist pure-strategy
equilibria in which less efficient suppliers are ranked before more efficient suppliers, while in
the mixed-strategy equilibria of the discriminatory auction such outcomes occur with positive
probability.

To highlight the relationship between market concentration and performance, we focus on
the symmetric case, in which we readily obtain the following result that corresponds directly with
the results obtained in the duopoly case.

Proposition 5. In the oligopoly model with symmetric suppliers, in particular, ks = K/S, s =
1, 2, . . . , S,

(i) (low demand) if θ ≤ θ̂ = [(S − 1)/S]K , Rd = Ru = 0;

(ii) (high demand) if θ > θ̂ = [(S − 1)/S]K , Rd = P S[θ − ((S − 1)/S)K ] < Pθ = Ru .

Market structure affects equilibrium outcomes differently in the two auction formats. In
both formats, the threshold that determines whether demand is “low” or “high” is increasing
in the number of suppliers. In other words, pricing at marginal cost is more likely in a more
fragmented industry. However, in the discriminatory auction (as opposed to the uniform auction),
market structure also affects bidding strategies in high-demand realizations. In the discriminatory
auction, suppliers play symmetric mixed strategies, and in equilibrium these strategies strike a
balance between a “price” and a “quantity” effect: lowering the price offer reduces the price
received but increases the likelihood of undercutting rivals and hence gaining a larger market
share. For a given level of demand, the “quantity effect” is more important the larger the number
of competitors. Hence in the discriminatory auction, price competition will be more intense the
less concentrated is the market structure.

To illustrate the above points, we again consider the numerical example introduced above,
with the specification that ks = K/S with K = 1 and cs = 0, s = 1, 2, . . . , S. Expected payments
to suppliers become E Rd = 1/(2S) and E Ru = (2S − 1)/(2S2), respectively. Numerical values
for different numbers of suppliers are given in Table 5.

A more fragmented industry structure improves the performance of both auctions, as well
as the relative performance of the discriminatory auction in this example. For a given number of
suppliers, the difference in payments between the two auctions roughly corresponds to the effect
of doubling the number of suppliers in the uniform auction.

� Long-lived bids. Our final variation on the basic duopoly model considers the case in which
suppliers face time-varying, or stochastic, demand. This is of particular relevance to electricity
markets in which suppliers submit offer prices that remain fixed for 24 or 48 market periods,
such as in Australia and the original market in England and Wales. We therefore assume here that
price offers must be made before the realization of demand (i.e., θ ) is known. It is easy to verify
that our previous analysis is robust to this change in the timing of decisions so long as the largest

TABLE 5 Increasing the Number of Suppliers

S 2 3 4 5 10 100 ∞

E Rd .250 .167 .125 .100 .050 .005 0
E RU .375 .278 .219 .180 .095 .010 0
E Rd/E Ru .667 .600 .571 .556 .526 .503 .5
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possible demand realization is low enough, or the lowest possible demand realization is large
enough. For instance, when demand never exceeds the critical threshold θ̂ defined in Proposition 1,
equilibria correspond to those analyzed for low-demand realizations. The introduction of demand
variability adds a new dimension to the problem only when both low- and high-demand realizations
occur with positive probability. We therefore assume that demand θ takes values in the support
[θ, θ ] ⊆ (0, k1 +k2), with θ < θ̂ < θ , according to some (commonly known) distribution function
G(θ ).

The equilibria of both the uniform and discriminatory auctions now differ significantly from
the case in which demand is known with certainty before bids are submitted. Demand uncertainty,
or variability, upsets all candidate pure-strategy equilibria in both types of auction (see von der Fehr
and Harbord, 1993 and Garcı́a-Dı́az, 2000). We therefore consider equilibria in mixed strategies.
For both the uniform and discriminatory auctions there exist unique mixed-strategy equilibria,
and it is possible to derive explicit formulae for the suppliers’ strategies.23

Lemma 3. Assume [θ, θ ] ⊆ (0, k1 +k2), with θ < θ̂ < θ . Then there does not exist an equilibrium
in pure strategies in either auction. In the unique mixed-strategy equilibrium suppliers submit bids
that strictly exceed c.

In a mixed-strategy equilibrium in either type of auction, suppliers must strike a balance
between two opposing effects: on the one hand, a higher offer price tends to result in higher
equilibrium prices; on the other hand, pricing high reduces each supplier’s expected output,
ceteris paribus. The first effect is less pronounced in the uniform auction than in the discriminatory
auction. In the uniform auction, a higher offer price translates into a higher market price only in the
event that the offer price is marginal, while in the discriminatory auction, pricing higher always
results in the supplier increasing the expected price it receives, conditional on being dispatched.
Consequently, there is a tendency for suppliers to price less aggressively in the discriminatory
auction compared to a uniform auction. This intuition is confirmed in the symmetric case (i.e.,
when k1 = k2 = k and c1 = c2 = 0), in which the equilibrium mixed-strategy distribution function
in the discriminatory auction first-order stochastically dominates the corresponding distribution
function in the uniform auction, i.e., Fu

i (b) ≥ Fd
i (b).24

We have not been able to characterize in detail the relationship between the model parameters
and suppliers’ equilibrium strategies in the general case. In the case of symmetric capacities,
however, we can show that in the limit, as θ → k (or k → θ ), so that demand is always less than the
capacity of a single supplier, the mixed-strategy equilibrium outcome in either auction approaches
the equilibrium outcome for a low-demand realization, with price equal to the marginal cost of the
higher-cost supplier. Similarly, as θ → k (or → θ ), so that demand always exceeds the capacity of
a single supplier, the equilibrium outcomes approach those for a high-demand realization. Further,
in the uniform auction the limiting equilibrium outcome is efficient, i.e., the more efficient supplier
produces at capacity and the less efficient supplier supplies the residual demand. This is in contrast
to the model with nonstochastic demand, in which there exist both efficient and inefficient pure-
strategy equilibria in high-demand realizations in the uniform auction.25 This suggests that the
uniform auction performs better in efficiency terms than the discriminatory auction, although we
have not been able to demonstrate that this result holds generally. Revenue comparisons also
prove difficult, except in the symmetric case, where it is easily demonstrated that (in expected
terms) total payments to suppliers are the same in both auction formats.

23 We are only able to characterize the mixed-strategy equilibria with long-lived bids by restricting attention to
single-unit suppliers. See Anwar (1999), who shows that the equilibria derived under this assumption may not survive
when we allow more complicated bidding strategies to be used.

24 The result follows from the observation that Fu
i (b) < Fd

i (b) implies πu
i > πd

i , whereas in the symmetric case,
πu

i = πd
i .
25 The fact that with uncertain demand the efficient outcome is unique might be viewed as a justification for treating

this as a natural “focal point” in the certain-demand case also.
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We end this section by comparing market performance under short-lived and long-lived
bids, respectively. This comparison is difficult in the general case, so we limit our attention to the
symmetric case. Let E R f

s and E R f
l denote expected total supplier payments in auction format

f = d, u in the case of short-lived and long-lived bids, respectively. We obtain the following
result.

Proposition 6. In the symmetric duopoly model, E Ru
l < E Ru

s , E Rd
l = E Rd

s , and E Ru
l = E Rd

l .

In other words, while there is no difference in the discriminatory auction, in the uniform auc-
tion long-lived bids outperform short-lived bids. With short-lived bids, the poor performance of
the uniform auction is caused by the extreme equilibrium outcome for high-demand realizations,
in which suppliers are paid the market reserve price. This equilibrium is supported by the infra-
marginal supplier bidding sufficiently low so as to discourage undercutting by the high-bidding,
price-setting supplier. With long-lived bids, however, the low-bidding supplier determines the
market price in low-demand realizations, and hence has an incentive to increase its offer price.
As a result, incentives for undercutting and competing for market share are increased, leading to
more aggressive bidding and lower prices overall in the uniform auction.

5. Conclusions

� In this article we have characterized equilibrium pricing behavior in uniform and discrimina-
tory auctions in a multi-unit auction model reflecting some key features of decentralized electricity
markets. Equilibria in the two auction formats have been compared in terms of both average prices
paid to suppliers and productive efficiency. In the case of certain demand (i.e., short-lived bids),
we found that uniform auctions yield higher average prices than discriminatory auctions. Com-
parison of the auctions in terms of productive efficiency is more complex, however, as it depends
on which equilibrium is played in the uniform auction as well as on parameter values. When
demand is uncertain (or bids are long lived), at least in the perfectly symmetric case, expected
payments to suppliers are the same in both auction formats.

Our theoretical model is obviously highly stylized, and while it does lead to a number of
qualitative results, it does not allow us to draw conclusions about their quantitative importance.
Nevertheless, numerical examples suggest that some of the effects identified may be significant.
For example, moving from a uniform to a discriminatory auction format in the certain-demand
case may have a similar effect on average prices to either a doubling of the number of suppliers or
increasing the capacity of two symmetric duopolists by almost 40%. However, under the restrictive
assumption that firms are symmetric,26 moving from a uniform auction with long-lived bids (as in
the original England and Wales market) to a discriminatory auction with short-lived bids (as under
NETA (New Electricity Trading Arrangements)) has no impact on expected prices. This suggests
that reduced market concentration and increased total capacity may have been as responsible
for the initial reduction in England and Wales wholesale electricity prices in 2001–2002 as any
change in the market design, although our model is obviously too specialized to decide this issue.

A key determinant of market performance in our analysis is the relative incidence of low-
demand and high-demand states, and this does not depend upon the auction format. Rather, it
depends on other market design issues and on structural features of the market. In particular, the
incidence of high-demand states is lower when there is more excess capacity in the industry, the
market structure is more fragmented, suppliers have symmetric capacities, demand is price elastic,
and the market reserve price is low. These factors affect not only the relative incidence of low-
and high-demand states, but may also influence bidding strategies. Changes in total capacity, the
capacity distribution, and market structure (i.e., “structural factors”) have no effect on prices in
the uniform auction in high-demand states, but they can lead to more vigorous price competition
in the discriminatory auction. Regulatory interventions to change the market rules, on the other
hand, affect bidding strategies in both types of auction. A reduction in the market reserve price

26 Assuming that the support of the demand distribution includes both high- and low-demand realizations.
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reduces average market prices in both auctions. Measures that increase the elasticity of demand
(e.g., the introduction of demand-side bidding) have similar effects. A change from short-lived to
long-lived bids, however, which makes the demand state uncertain when suppliers’ submit their
bids, may have a greater effect on prices in the uniform auction.

Our analysis allows us to make the following comments on regulatory policy with respect to
the design of electricity auctions:

Auction format. The uniform auction is always weakly outperformed by the discriminatory auction
with respect to total revenues in our setup. Thus our analysis suggests that a regulator who is
concerned only with the minimization of prices should prefer the discriminatory format. However,
if the regulator assigns positive weights to both productive efficiency and consumer surplus, the
auction ranking will depend on the specific weights assigned to each, and on industry data.

Bid format. Long-lived bids outperform short-lived bids in the uniform auction. In particular, bids
that cover a whole day or longer periods lead to lower average prices than bids that vary hourly
or half-hourly. There is no corresponding effect in the discriminatory action. However, in both
types of auction, a single-bid format performs as well as formats in which suppliers are allowed
to make multiple bids (e.g., different bids for equal-cost capacity units). Our analysis therefore
provides some support for the view that simplifying bid formats—with regard to both duration
and structure—is likely to improve market performance.

Market reserve price. Reserve prices, or price caps, in most electricity markets are intended to
reduce the incidence of high price spikes. A lower market reserve price obviously affects prices
in events in which the price cap binds. However, it also affects prices indirectly via its effect on
competition, i.e., by reducing the number of high-demand periods and intensifying competition
in high-demand periods in the discriminatory auction.27

Demand-side measures. Measures to stimulate the price responsiveness of demand directly
improve allocative efficiency and increase supply security. They also result in more competition
via similar effects to those achieved by reducing the market reserve price.

From a methodological point of view, the article has also contributed to the analysis of multi-
unit electricity auctions in a number of ways.28 First, we have shown that the set of equilibrium
outcomes in uniform and discriminatory auctions with short-lived bids is essentially independent
of the number of admissible steps in suppliers’ offer-price functions, so as long as this number is
finite. This reduces the complexity involved in the analysis of multi-unit auctions, as it allows us to
focus on the single-unit case with no significant loss in generality. Second, we have demonstrated
that the “implicitly collusive” equilibria found in the uniform auction when offer prices are
infinitely divisible are unique to this formulation of the auction (i.e., to share auctions), and do not
arise when offer-price functions are discrete. Hence the concerns expressed in the literature that
uniform auctions may lead to “collusive-like” outcomes, even in potentially competitive periods
when there is considerable excess capacity, are likely misplaced.29

Appendix

� Proofs of Lemmas 1 through 3 and Propositions 1, 4, and 6 follow.

Proof of Lemma 1. Let p denote the highest accepted price offer and let bi = p. Clearly, we must have p ≥ ci . Let
cp = maxc j≤p c j and cp = {minc j >p c j if p < c; and P otherwise}. Suppose p > cp . Then, for j �= i with c j < p, we

27 An important caveat is that we are considering only short-run comparative static effects and ignoring longer-run
investment or entry incentives. In particular, price caps may deter investment in peaking capacity, which in some power
systems is a major problem.

28 See Fabra, von der Fehr, and Harbord (2002) for a nontechnical discussion.
29 In addition we have identified a new class of (mixed-strategy) equilibria in weakly undominated strategies in

the Bertrand model, i.e., in low-demand states.
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must have b j ≤ p (with strict inequality if c j = ci ), since otherwise supplier j could gain by matching (undercutting)
bi . But then i’s profit is strictly increasing in bi on [p, cp], proving the first part of the result. Last, in the discriminatory
auction, in a pure-strategy equilibrium we cannot have b j < p, given that supplier j’s profit is strictly increasing in b j
up to p. Q.E.D.

Proof of Proposition 1. Consider first the possibility of a pure-strategy equilibrium in which the highest accepted offer
price equals c. Profits to supplier i are given by [c − ci ] min{θ − Ki−1, ki}, where Ki =

∑i
j=1 k j , i = 1, 2 and K0 = 0,

while the profit from deviating to a higher price is at most [P −ci ] max{θ − K−i , 0}, where K−i =
∑

j �=i k j . A necessary
(and, indeed, sufficient) condition for such an equilibrium to exist consequently is [c − ci ] min{θ − Ki−1, ki} − [P −
ci ] max{θ − K−i , 0} ≥ 0. Given that, for θ ≥ K−i , the left-hand side of this expression is nonincreasing in θ , there
exists a unique θ̂i such that the condition is satisfied if and only if θ ≤ θ̂i . Existence of the equilibrium then requires
θ ≤ min θ̂i ≡ θ̂ .

Consider next the possibility of an equilibrium in which supplier i submits the highest accepted price offer bi = P .
Clearly, for such an equilibrium to exist we must have θ − K−i > 0. By the argument in the proof of Lemma 1, it follows
that i’s equilibrium profits are [P − ci ][θ − K−i ]. Obviously, any profitable deviation by i would involve undercutting the
competitor so as to increase output (with a consequent fall in price). If the competitor prices at cost, the maximum gain
from undercutting is given by [c j − ci ] min{θ − Ki−1, ki} when θ ∈ (K j−1, K j ]. Consequently, a necessary condition
for such an equilibrium to exist is that [P − ci ][θ − K−i ]− [c j − ci ] min{θ − Ki−1, ki} ≥ 0. By the monotonicity of the
left-hand side of the condition, it follows that the condition is satisfied if and only if θ ≥ θ̂i , implying that a monopolistic
pure-strategy equilibrium can exist only if θ ≥ θ̂ .

The existence of a monopolistic pure-strategy equilibrium in the uniform auction when θ ≥ θ̂i for some i is
straightforward and involves supplier i pricing at P while the competitor prices sufficiently low so as to make undercutting
by i unprofitable. In the discriminatory auction, by the result in Lemma 1 that in a pure-strategy equilibrium all accepted
units are offered at the same price, it follows that there cannot exist an equilibrium in which accepted price offers exceed c,
since then at least one supplier could increase output by (marginally) undercutting its competitor. When θ ≥ θ̂i , supplier
i’s rival knows that a price offer of c being undercut is a probability-zero event, and hence will surely price above c also.

For further reference, we register the following results. Noting that we must have θ̂1 ≥ k2, θ̂1 is implicitly defined
by the equation c min{̂θ1, k1} = P [̂θ1 − k2]. It follows that θ̂1 = [P/(P − c)]k2 if θ̂1 ≤ k1 and θ̂1 = k2 + (c/P)k1 if
θ̂1 > k1. This may alternatively be stated as θ̂1 = [P/(P − c)]k2 if [P/(P − c)]k2 ≤ k1 and θ̂1 = k2 + (c/P)k1 otherwise.
Similar reasoning leads to the result that θ̂2 = k1. Consequently, θ̂ = [P/(P − c)]k2 if [P/(P − c)]k2 ≤ k1 and θ̂ = k1
otherwise. Q.E.D.

� Mixed-strategy equilibria in the basic model. We now characterize mixed-strategy equilibria in both auction
formats. We first consider the existence of mixed-strategy equilibria in low-demand realizations (i.e., for θ < θ̂ =
min{̂θ1, θ̂2}) in both auction formats. We then consider the uniform auction for high-demand realizations in which
there are multiple pure-strategy equilibria (i.e., θ ≥ max{̂θ1, θ̂2}). Last we characterize mixed-strategy equilibria in the
discriminatory auction for all high-demand realizations (i.e., θ > θ̂ = min{̂θ1, θ̂2}).

Low demand: both auction formats. Assume θ < θ̂ = min{̂θ1, θ̂2}. Let bi and bi denote the infimum and supremum,
respectively, of the support of supplier i’s strategy. We first note that b1 = b2 ≥ c. This follows from the facts that bi ≥ ci
and that profits are strictly increasing in the bid whenever it is the lowest. We next observe that supplier i obtains zero
profits if bi > b j . The same is true if b1 = b2 < b1 = b2 = b and either no one plays b with positive probability or,
if some player does (there is at most one), it is supplier 2. It follows that at least one player earns zero profits in any
mixed-strategy equilibrium. If c > 0, this is not supplier 1, who can always guarantee positive profits by bidding below
c; so b1 ≤ b2. Furthermore, if c > 0, b1 = c, since otherwise supplier 2 could obtain positive profits by undercutting.

Consequently, if c > 0, there exist mixed-strategy equilibria in which supplier 1 bids b1 = c with probability
1 and supplier 2 (who obtains zero profits and is consequently indifferent between any bid at or above c) mixes over
the range [c, b′) for any b′ ∈ (c, P), according to some strategy F2(b) = Pr(b2 ≤ b) that satisfies F2(b) ≥ 1 − c/b,
so as to deter supplier 1 from raising his bid. Given supplier 2’s strategy, supplier 1’s profit from bidding b > c is
F2(b) · 0 + [1 − F2(b)] · bθ ≤ cθ .

Note that the set of mixed-strategy equilibria are the same in both auctions and that outcomes (outputs, profits, and
costs) are identical to those of the pure-strategy equilibrium. Note further that while the pure-strategy equilibrium involves
supplier 2 playing a weakly-dominated strategy (i.e., bidding at c), in any mixed-strategy equilibrium supplier 2 plays an
undominated strategy almost surely.

If c = 0, min{b1, b2} = 0, since otherwise either supplier could obtain positive profits by undercutting. It follows
that there does not exist a mixed-strategy equilibrium in this case.

High demand: uniform auction. Assume θ ≥ max{̂θ1, θ̂2} = max{k1, k2 + (c/P)k1}. Let Fu
i (b) = Pr{bi ≤ b} denote

the equilibrium mixed-strategy of supplier i , i = 1, 2, with density f u
i (b) = F ′u

i (b), and let Su
i be the support of Fu

i .
Furthermore, let Su = (max{inf Su

1 , inf Su
2 }, min{sup Su

1 , sup Su
2 }). Note first that Fu

i cannot have a mass point on Su .
To see this, suppose, for contradiction, that Fu

i has a mass point at some b′ ∈ Su . Then, for some interval [b′, b′ + ε),
ε > 0, i’s competitor would be better off by offering to supply at a price just below b′ than to offer prices in this interval.
But then i’s profit would be strictly increasing on [b′, b′ + ε), contradicting the assumption that b′ is in the support of i’s
strategy. A similar argument establishes that Su

i is an interval (i.e., without “holes”). Furthermore, since P must be in the
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support of at least one supplier’s strategy, we have Su = Su
1∩ Su

2 = (b, P). We want to demonstrate that any mixed-strategy
equilibrium has the form

Fu
1 (b) =

 A1

[
b − c
P − c

] θ−k1
k1+k2−θ

for b < b < P

1 for b = P

Fu
2 (b) =

 A2

[
b
P

] θ−k2
k1+k2−θ

for b < b < P

1 for b = P
b = c,

where either (i) A1 = 1 and 0 < A2 ≤ 1 or (ii) 0 < A1 ≤ 1 and A2 = 1.
On (b, P), strategies must satisfy the following differential equations:

Fu
2 (b)[θ − k2] − f u

2 (b)b[k1 + k2 − θ ] = 0,

Fu
1 (b)[θ − k1] − f u

1 (b)[b − c][k1 + k2 − θ ] = 0.

On the interior of the support of the mixed strategies, the net gain from raising the bid marginally must be zero. The
first elements on the left-hand side of the above expressions represent the gain to a supplier from the resulting increase
in the price received in the event that the rival bids below. The second element represents the loss from reducing the
chance of being dispatched at full capacity instead of serving the residual demand only (the difference being, for supplier
i , ki − [θ − k j ] = k1 + k2 − θ ). The above expressions may alternatively be written

f u
2 (b) − 1

b
θ − k2

k1 + k2 − θ
Fu

2 (b) = 0

f u
1 (b) − 1

b − c
θ − k1

k1 + k2 − θ
Fu

1 (b) = 0,

and have solutions

Fu
1 (b) = Â1[b − c]

θ−k1
k1+k2−θ

Fu
2 (b) = Â2b

θ−k2
k1+k2−θ ,

with Âi > 0, i = 1, 2.
Since at most one supplier can play P with positive probability (i.e., either Pr(b1 = P) = 0 or Pr(b2 = P) = 0), we

have either (i) limb→P Fu
2 (b) ≤ limb→P Fu

1 (b) = 1, implying

Â1 =
[

1
P − c

] θ−k1
k1+k2−θ

and Â2 ≤
[

1
P

] θ−k2
k1+k2−θ

,

or (ii) limb→P Fu
1 (b) ≤ limb→P Fu

2 (b) = 1, implying

Â1 ≤
[

1
P − c

] θ−k1
k1+k2−θ

and Â2 =
[

1
P

] θ−k2
k1+k2−θ

.

Note that because there are no mass points on (b, P) and limb→c Fu
1 (b) = 0, we must have b = c. Since limb→c Fu

2 (b) =
Â2c[(θ−k2)/(k1+k2−θ )] > 0, while Fu

2 cannot have a mass point at c, it follows that for a mixed-strategy equilibrium to
exist it must involve, with positive probability, supplier 2 offering to supply at prices below its own cost (note that this
implies that there does not exist a mixed-strategy equilibrium in weakly undominated strategies). The only constraint that
F2(b) must satisfy for b ≤ c follows from the condition that undercutting by supplier 1 must be unprofitable; one solution
satisfying this constraint is given by the above first-order condition, but a continuum of other solutions exists as well.

In a mixed-strategy equilibrium, profits become

πu
1 = P{Pr(b2 = P)k1 + [1 − Pr(b2 = P)][θ − k2]},

πu
2 = [P − c]{Pr(b1 = P)k2 + [1 − Pr(b1 = P)][θ − k1]}.

Note that for the class of equilibria in which limb→P Fu
1 (b) = 1 (implying that A1 = 1 and Pr(b1 = P) = 0), total
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industry profits are maximized in the limiting case Pr(b2 = P) = 1 (which corresponds to A2 = 0 ), where πu
1 = Pk1 and

πu
2 = [P − c][θ − k1]. This is the same as in the corresponding pure-strategy equilibrium in which supplier 2 is bidding

high, implying that profits in this pure-strategy equilibrium dominate those in any mixed-strategy equilibrium. Moreover,
industry profits are minimized in the case Pr(b2 = P) = 0 (which corresponds to A2 = 1), where πu

1 = P[θ − k2] and
πu

2 = [P − c][θ − k1]. Corresponding results hold for the other class of mixed-strategy equilibria.

High demand: discriminatory auction. Assume θ > min{̂θ1, θ̂2} = θ̂ . From the proof of Proposition 1, there are two
cases to consider: [P/(P − c)]k2 ≤ k1, in which case θ̂ = [P/(P − c)]k2, and [P/(P − c)]k2 > k1, in which case,
θ̂ = k1.

Let Fd
i (b) = Pr{bi ≤ b} denote the equilibrium mixed strategy of supplier i and let Sd

i be the support of Fd
i .

Standard arguments (see above) imply that S = (b, P) ⊆ Sd
1 , Sd

2 ⊆ [b, P] and that Fd
i and Fd

j do not have mass points
on [b, P). We want to show that there exists a unique equilibrium with

Fd
1 (b) =

 min{θ, k2}
min{θ, k1} + min{θ, k2} − θ

b − b
b − c

for b < P

1 for b = P ,

Fd
2 (b) =

 min{θ, k1}
min{θ, k1} + min{θ, k2} − θ

b − b
b

for b < P

1 for b = P ,

where b = c + [P − c](θ − k1)/min{θ, k2} if Pk2 > [P − c]k1 and b = P(θ − k2)/min{θ, k1} if Pk2 ≤ [P − c]k1
(note that, in both cases, b ≥ c).

Suppliers’ profits may be written

πd
1 (b) = b{Fd

2 (b) max{θ − k2, 0} + [1 − Fd
2 (b)] min{θ, k1}},

πd
2 (b) = [b − c]{Fd

1 (b) max{θ − k1, 0} + [1 − Fd
1 (b)] min{θ, k2}}.

A necessary condition for supplier i to be indifferent between any price in Sd
i is that, for all b ∈ Sd

i , πd
i (b) = πd

i ,
implying

Fd
1 (b) =

[b − c] min{θ, k2} − πd
2

[b − c][min{θ, k1} + min{θ, k2} − θ ]
,

Fd
2 (b) =

b min{θ, k1} − πd
1

b[min{θ, k1} + min{θ, k2} − θ ]
,

where we have used the fact that max{θ − ki , 0} = θ − min{θ, ki}.
Observe that the boundary condition Fd

1 (b) = Fd
2 (b) = 0 implies

πd
1 = b min{θ, k1},

πd
2 = [b − c] min{θ, k2}.

Furthermore, we have

lim
b→P

[
Fd

1 (b) − Fd
2 (b)

]
=

P − b
min{θ, k1} + min{θ, k2} − θ

[
min{θ, k2}

P − c
− min{θ, k1}

P

]
.

If k1 < [P/(P − c)]k2, in which case θ > k1, we cannot have limb→P Fd
2 (b) = 1, since this would imply

limb→P Fd
1 (b) > 1. Consequently, we have the boundary condition limb→P Fd

1 (P) = 1, which implies

πd
2 = [P − c][θ − k1],

and, together with the condition Fd
1 (b) = 0,

b = c + [P − c]
θ − k1

min{θ, k2}
≥ c.

If, on the other hand, k1 > [P/(P − c)]k2, in which case θ > [P/(P − c)]k2, we have the boundary condition
limb→P Fd

2 (P) = 1, which implies

πd
1 = P[θ − k2],
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and, together with the condition Fd
2 (b) = 0,

b = P
θ − k2

min{θ, k1}
≥ c.

Note that, in both cases, b → c as θ → θ̂ , and so, in the limit, π1 = c[̂θ − k2] and π2 = 0.
In the case k1 < [P/(P − c)]k2 (similar results are obtained in the alternative case), equilibrium profits, expected

costs, and expected revenues may be written

πd
1 = ck1 + [P − c][θ − k1]

k1

min{θ, k2}
and πd

2 = [P − c][θ − k1]

ECd = Pr{b1 ≤ b2}c[θ − k1] + Pr{b1 > b2}c min{θ, k2}
E Rd = πd

1 + πd
2 + ECd ,

where

Pr{b1 ≤ b2} =
∫ P

b
Fd

1 (b)d Fd
2 (b) + 1 − k1

k1 + min{θ, k2} − θ

P − b
P

.

With some algebra,

∫ P

b
Fd

1 (b)d Fd
2 (b) =

k1 min{θ, k2}
[k1 + min{θ, k2} − θ ]2

b
c

[
P − b

P
− b − c

c
ln

(
P − c
b − c

b
P

)]
.

In the limit,

lim
c→0

Pr{b1 ≤ b2} = 1 − 1
2

k1

min{θ, k2}
≥ 1

2
,

lim
c→P

Pr{b1 ≤ b2} = 1,

and hence

1/2 ≤ Pr{b1 ≤ b2} ≤ 1,

c[θ − k1] ≤ ECd ≤ c min{θ, k2} + c[θ − k1]
2

,

πd
1 + πd

2 + c[θ − k1] ≤ E Rd ≤ πd
1 + πd

2 +
c min{θ, k2} + c[θ − k1]

2
.

Furthermore, we know that we cannot have E Rd = Pθ , since this would require both suppliers playing P with positive
probability. Thus, E Rd < Pθ .

Proof of Lemma 2. Verifying that the arguments of Lemma 1 and Proposition 2 go through with multiple bids is straight-
forward. Below we want to demonstrate that in the discriminatory auction, the best response to a rival offering all of its
capacity at the same price according to an equilibrium distribution function is to bid a flat bid function also. Under the
assumption that b jn = b j , n = 1, . . . , N j , with b j chosen according to the distribution function Fj , supplier i’s expected
profits may be written

πi (bi ) =
Ni1∑
n=1

[bin − ci ]

{
Fj (bin) min

{
kin, max

{
θ − k j −

n−1∑
m=1

kim , 0

}}
+ [1 − Fj (bin)]kin

}
,

where we have defined
∑0

m=1 kim ≡ 0. Suppose bi is set optimally, that Ni > 1, and that bin < bin+1 for some
n = 1, 2, . . . , Ni −1 (i.e., there are at least two steps in i’s bid function). We want to show that this leads to a contradiction.
Consider first the case that θ > k j and let n̂ be chosen such that 0 < θ − k j −

∑n̂−1
m=1 kim < kin̂ . Clearly such an n̂ exists

and is unique. Note that we have θ − k j −
∑n−1

m=1 kim > kin for n < n̂ and θ − k j −
∑n−1

m=1 kim < 0 for n > n̂. Supplier
i’s profit can then be rewritten as

πi (bi ) =
n̂−1∑
n=1

[bin − ci ]kin + [bin̂ − ci ]

{
Fj (bin̂)

[
θ − k j −

n̂−1∑
n=1

kin

]
+ [1 − Fj (bin̂)]kin̂

}

+
Ni∑

n=̂n+1
[bin − ci ][1 − Fj (bin)]kin
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= [bin̂ − ci ]{Fj (bin̂)[θ − k j ] + [1 − Fj (bin̂)]ki} +
n̂−1∑
n=1

[bin − bin̂]kin

+
Ni∑

n=̂n+1
{[bin − ci ][1 − Fj (bin)] − [bin̂ − ci ][1 − Fj (bin̂)]}kin .

The first term in the last expression equals the profit supplier i would obtain if all of its units were bid in at the same price
bin̂ . The second term is clearly negative: it is always profitable to increase offer prices on units that will be dispatched
with probability 1. The last term is negative also. To see this, note that if Fj is the mixed strategy corresponding to an
equilibrium in which supplier i offers all units at the same price, it must satisfy

πi (bi ) = [bi − ci ]{Fj (bi ) min{ki , max{θ − k j , 0}} + [1 − Fj (bi )] min{ki , θ}} = π i ,

where π i is some constant. Consider two offer prices b̂ > b̃ on the support of Fj . Then

0 = [̂b − ci ]{Fj (̂b) min{ki , max{θ − k j , 0}} + [1 − Fj (̂b)] min{ki , θ}}
− [̃b − ci ]{Fj (̃b) min{ki , max{θ − k j , 0}} + [1 − Fj (̃b)] min{ki , θ}}

= {[̂b − ci ]Fj (̂b) − [̃b − ci ]Fj (̃b)}min{ki , max{θ − k j , 0}}
+ {[̂b − ci ][1 − Fj (̂b)] − [̃b − ci ][1 − Fj (̃b)]}min{ki , θ}

≥ {[̂b − ci ][1 − Fj (̂b)] − [̃b − ci ][1 − Fj (̃b)]}min{ki , θ},

where the inequality follows from the observation that [b − ci ]Fj (b) is increasing in b (the inequality is strict if θ > ki ).
In the case that θ ≤ k j , supplier i’s profits simplify to

πi (bi ) =
Ni∑

n=1
[bin − ci ][1 − Fj (bin)]kin,

and so we can apply a similar argument to the one immediately above to demonstrate that profits are maximized for
bi1 = bi2 = · · · = bi Ni = bi . We conclude that for supplier i to offer all capacity at a single price is a best response to Fj .
Q.E.D.

Proof of Proposition 4. Let Ks =
∑s

i=1 ki be the accumulated capacity of the s most efficient suppliers and K−i
s = Ks −ki ,

i ≤ s, the accumulated capacity of the s most efficient suppliers not including supplier i . Note first that accepted price
offers cannot exceed cs if θ ≤ mini≤s{K−i

s }. To see this, suppose that the highest accepted price offer were indeed
b > cs . Since at most one supplier will offer b with positive probability, all other suppliers i �= s, ci < b, will price below
b. But then, since θ < mini≤s{K−i

s }, a price offer of b will never be accepted. It follows that mini≤s{K−i
s } is a lower

bound for θ̂−s .
Consider next events in which θ ≥ Ks−1. Then, since suppliers s never price below cs , any supplier i < s who offers

bi < cs will be accepted with probability 1 and dispatched at full capacity. It follows that there cannot exist an equilibrium
in which some supplier accepts to be paid a price below cs . Furthermore, if cs < cs+1, or s = S (so θ ≥ KS−1), suppliers
s will price above cs with probability 1 and hence suppliers i < s will not accept to be paid prices equal to cs either.
Consequently, Ks−1 is an upper bound for θ̂+

s .
Last, we observe that mini≤s{K−i

s } = Ks−1 if ks = maxi≤s ki (or ks ≥ maxi<s ki ), in which case we must have
θ̂−s = θ̂+

s . Q.E.D.

Proof of Lemma 3. We start by showing that a pure-strategy equilibrium does not exist in either auction format. To see
this, note first that in a pure-strategy equilibrium all effective offer prices (i.e., offers that with positive probability affect
the prices suppliers are paid) must be equal; if not, some supplier could profitably increase its offer price toward the
next-higher bid, thereby increasing profits in the event that this offer is effective without reducing output in any event.
Next, observe that this common price cannot exceed c; if it did, some supplier could profitably deviate to a slightly lower
price, thereby increasing the expected quantity dispatched with only a negligible effect on the expected price. Last, bidding
at c cannot constitute an equilibrium either, since the supplier with costs equal to c could obtain positive profits in the
event that demand exceeds the capacity of its rival by raising its offer price.

We next characterize the unique equilibrium for each auction format. Closed-form solutions for specific examples
are available from the authors upon request.

Uniform auction. Let Fu
i (b) = Pr{bi ≤ b} denote the equilibrium mixed strategy of supplier i , i = 1, 2, in the uniform

auction, with f u
i (b) = Fu′

i (b), and let Su
i be the support of Fu

i . Standard arguments imply that Su
1∩ Su

2 = [bu , P), bu ≥ c,
and that Fu

1 and Fu
2 do not have mass points on (bu , P).

We focus on the case in which θ < min{k1, k2} ≤ max{k1, k2} < θ . Supplier i’s profit, when bidding b, may then
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be written

πu
i (b) = Fu

j (b)
∫ θ

k j

[b − ci ][θ − k j ]dG(θ ) +
∫ P

b

[∫ ki

θ

[b − ci ]θdG(θ ) +
∫ θ

ki

[υ − ci ]ki dG(θ )

]
d Fu

j (υ).

The first term on the right-hand side represents supplier i’s profits in the event that the rival bids below b, in which case
supplier i produces a positive quantity only when demand is above the capacity of the rival. The second term represents
supplier i’s profits in the event that the rival bids above b. As given by the first element of this term, supplier i will then
serve all demand at its own price when its capacity is sufficient to satisfy all the demand. On the other hand, and as given
by the second element, supplier i will produce at full capacity and receive a price determined by the rival’s bid in the
event that demand exceeds its capacity.

On (bu , P), strategies must satisfy the following differential equations:

Fu
j (b)

∫ θ

k j

[θ − k j ]dG(θ ) + [1 − Fu
j (b)]

∫ ki

θ

θdG(θ )

− [b − ci ] f u
j (b)

{∫ ki

θ

θdG(θ ) +
∫ θ

ki

ki dG(θ ) −
∫ θ

k j

[θ − k j ]dG(θ )

}
= 0.

On the interior of the support of the mixed strategies, the net gain from raising the bid marginally must be zero. The
first element on the left-hand side represents the gain to a supplier from the resulting increase in the price received in the
event that demand exceeds the capacity of the rival and the rival bids below. The second element represents the gain to
a supplier from the resulting increase in the price in the event that demand is lower than its capacity and the rival bids
above. Last, the third term represents the loss from being dispatched with a smaller output: in case demand falls below
the supplier’s capacity, the loss of output equals total demand; in case demand exceeds the supplier’s capacity, the loss
equals the difference between being dispatched at full capacity and serving residual demand only (i.e., ki − [θ − k j ]).
The above expressions may alternatively be written

f u
j (b) −

λ j

b − ci
Fu

j (b) =
β j

b − ci
,

where

λ j =

∫ θ

k j
[θ − k j ]dG(θ ) −

∫ ki
θ

θdG(θ )∫ θ

θ
θdG(θ ) −

∫ θ

ki
[θ − ki ]dG(θ ) −

∫ θ

k j
[θ − k j ]dG(θ )

β j =

∫ ki
θ

θdG(θ )∫ θ

θ
θdG(θ ) −

∫ θ

ki
[θ − ki ]dG(θ ) −

∫ θ

k j
[θ − k j ]dG(θ )

,

which have solutions

Fu
j (b) =


β j ln(b − ci ) + �

j
1 for λ j = 0

�
j
2[b − ci ]λ j −

β j

λ j
for λ j �= 0,

where �
j
1, �

j
2, j = 1, 2, are constants of integration. Note that if ki ≤ k j , βi ≥ β j . Furthermore, β1 = β2 and λ1 = λ2

when k1 = k2. Also, if ki ≤ k j , β j → 0 as θ ↑ ki , while β j + λ j → 0 as θ ↓ k j .
Given the boundary condition Fu

j (bu ) = 0, these equations yield the mixed-strategy distribution functions for
b ∈ [bu , P):

Fu
j (b) =


β j ln

(
b − ci

bu − ci

)
for λ j = 0

β j

λ j

{[
b − ci

bu − ci

]λ j
− 1

}
for λ j �= 0.

Suppose limb↑P Fu
2 (b) ≤ limb↑P Fu

1 (b) = 1 (in the opposite case, i.e., when limb↑P Fu
1 (b) ≤ limb↑P Fu

2 (b) = 1, a
corresponding argument can be applied). Then it is straightforward to verify that bu is given uniquely as

bu =


c2 + [P − c2]e−

1
β1 for λ1 = 0

c2 + [P − c2]
[

β1

λ1 + β1

] 1
λ1 for λ1 �= 0.
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Substituting for bu , we find

Fu
1 (b) =


1 + β1 ln

(
b − c2

P − c2

)
for λ1 = 0

β1

λ1

{
λ1 + β1

β1

[
b − c2

P − c2

]λ1
− 1

}
for λ1 �= 0,

while Fu
2 (P) = 1 and, for b ∈ [bu , P),

Fu
2 (b) =



β2 ln

(
b − c1

[P − c2]e−
1
β1 + c2 − c1

)
for λ1 = λ2 = 0

β2

λ2


 b − c1

[P − c2]
[

β1

λ1 + β1

] 1
λ1 + c2 − c1


λ2

− 1

 for λ1, λ2 �= 0.

Equilibrium profits become

πu
1 = [P − c1]{Pr(b2 < P)

∫ θ

k2

[θ − k2]dG(θ ) + Pr(b2 = P)
∫ θ

θ

min(θ, k1)dG(θ )},

πu
2 = [P − c2]

∫ θ

k1

[θ − k1]dG(θ ),

where Pr(b2 < P) = limb↑P Fd
2 (b).

Discriminatory auction. Let Fd
i (b) = Pr{bi ≤ b} denote the equilibrium mixed strategy of supplier i , i = 1, 2, in the

discriminatory auction, and let Sd
i be the support of Fd

i and f d
i (b) its density function. Standard arguments imply that

Sd
1 ∩ Sd

2 = [bd , P), bd ≥ c, and that Fd
1 and Fd

2 do not have mass points on [bd , P).
Again we focus on the case in which θ < min{k1, k2} ≤ max{k1, k2} < θ . Supplier i’s profit, when bidding b,

may then be written

πd
i (b) = [b − ci ]{Fd

j (b)
∫ θ

k j

[θ − k j ]dG(θ ) + [1 − Fd
j (b)][

∫ ki

θ

θdG(θ ) +
∫ θ

ki

ki dG(θ )]}.

A necessary condition for supplier i to be indifferent between any price in Sd is that, for all b ∈ Sd , πd
i (b) = πd

i ,
implying

Fd
j (b) =

∫ θ

θ
θdG(θ ) −

∫ θ

ki
[θ − ki ]dG(θ ) − πd

i
b−ci∫ θ

θ
θdG(θ ) −

∫ θ

ki
[θ − ki ]dG(θ ) −

∫ θ

k j
[θ − k j ]dG(θ )

.

Observe that the boundary condition Fd
j (bd ) = 0 implies

πd
i = [bd − ci ]

[∫ θ

θ

θdG(θ ) −
∫ θ

ki

[θ − ki ]dG(θ )

]
,

and so

Fd
j (b) =

∫ θ

θ
θdG(θ ) −

∫ θ

ki
[θ − ki ]dG(θ )∫ θ

θ
θdG(θ ) −

∫ θ

ki
[θ − ki ]dG(θ ) −

∫ θ

k j
[θ − k j ]dG(θ )

b − bd

b − ci
.

We have

Fd
1 (b)≷Fd

2 (b) ⇔ b − c1

b − c2
≷

∫ θ

θ
θdG(θ ) −

∫ θ

k1
[θ − k1]dG(θ )∫ θ

θ
θdG(θ ) −

∫ θ

k2
[θ − k2]dG(θ )

.
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Suppose Fd
1 (b) > Fd

2 (b) (in the opposite case a corresponding argument to the following may be applied). Then we
cannot have limb↑P Fd

2 (b) = 1, since this would imply limb↑P Fd
1 (b) > 1. Consequently, we have the boundary condition

limb↑P Fd
1 (P) = 1, which implies

πd
2 = [P − c2]

∫ θ

k1

[θ − k1]dG(θ ),

and, together with the condition Fd
1 (bd ) = 0,

bd = c2 + [P − c2]

∫ θ

k1
[θ − k1]dG(θ )∫ θ

θ
θdG(θ ) −

∫ θ

k2
[θ − k2]dG(θ )

.

Equilibrium profits become

πd
1 = [P − c1]

{
Pr(b2 < P)

∫ θ

k2

[θ − k2]dG(θ ) + Pr(b2 = P)
∫ θ

θ

min(θ, k1)dG(θ )

}
,

πd
2 = [P − c2]

∫ θ

k1

[θ − k1]dG(θ ),

where

Pr(b2 < P) = lim
b↑P

Fd
2 (b) =

P − c2

P − c1

∫ θ

θ
θdG(θ ) −

∫ θ

k1
[θ − k1]dG(θ )∫ θ

θ
θdG(θ ) −

∫ θ

k2
[θ − k2]dG(θ )

.

Q.E.D.

Proof of Proposition 6. Uniform auction format. With short-lived bids, total payments to suppliers equal zero for low-
demand realizations and Pθ for high-demand realizations, and so overall expected payments equal E Ru

s = P E{θ | θ ≥
k}G(k). With long-lived bids, for given demand realization θ , total payments equal 2P max{θ −k, 0}, and so in expected
terms we have E Ru

l = 2P[E{θ | θ ≥ k} − k]G(k). From these expressions we find

E Ru
l − E Ru

s = P[E{θ | θ ≥ k} − 2k]G(k) < 0.

Discriminatory auction format. With short-lived bids, total payments to suppliers equal zero for low-demand realizations
and 2P[θ−k] for high-demand realizations, and so overall expected payments equal E Rd

s = 2P[E{θ | θ ≥ k}−k]G(k).
With long-lived bids, for given demand realization θ , total payments equal 2P max{θ − k, 0}, and so in expected terms
we have E Rd

l = 2P[E{θ | θ ≥ k} − k]G(k) = E Rd
s . Q.E.D.
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